Doubled Aspects of Vaisman Algebroid in Para-Hermitian Geometry

Kenta Shiozawa
16 Oct. 2019
Kitasato University
Doubled Aspects of Vaisman Algebroid in Para-Hermitian Geometry

in collaboration with Haruka Mori and Shin Sasaki
based on arXiv:1901.04777

Workshop on Recent Developments in Mathematical Physics @ Osaka Pref. U.
to give a geometric realization of the Vaisman algebroid as a double of a pair of Lie algebroids
The outline of this talk

Introduction

Para-Hermitian Geometry

Doubled Aspects of Vaisman Algebroid in DFT

Discussion on DFT Gauge Symmetry

Summary
Introduction
Why Para-Hermitian Geometry?

— *Because, the geometry of Double Field Theory is described by a para-Hermitian geometry.*

[Vaisman '12]
Double Field Theory (DFT) [Hull-Zwiebach '09] = the T-duality covariantised an effective theory of strings

- a gravity theory defined on the doubled spacetime \mathcal{M}^{2D}
- \mathcal{M}^{2D}: locally given by $\mathcal{M}^{2D} \simeq M^D \times \tilde{M}^D$ (M^D: spacetime)
Double Field Theory (DFT) [Hull-Zwiebach '09] = the T-duality covariantised an effective theory of strings

- a gravity theory defined on the doubled spacetime \mathcal{M}^{2D}
- \mathcal{M}^{2D}: locally given by $\mathcal{M}^{2D} \simeq M^D \times \tilde{M}^D$ (M^D: spacetime)

The Section Condition: needed to make DFT be a physical theory

$$\eta^{MN} \partial_M \ast \partial_N \ast = 0$$

- the physical spacetime: a D-dimensional space (not $2D$)
- S.C. is a constraint that reduces extra d.o.f.
- S.C. originally came from the LMC of closed strings
Double Field Theory (DFT) [Hull-Zwiebach '09]

= the T-duality covariantised an effective theory of strings

- a gravity theory defined on the doubled spacetime \mathcal{M}^{2D}
- \mathcal{M}^{2D}: locally given by $\mathcal{M}^{2D} \simeq M^D \times \tilde{M}^D$ (M^D: spacetime)

The Section Condition: needed to make DFT be a physical theory

- S.C. is necessary due to the closedness of the DFT gauge algebra

$$[\hat{\mathcal{L}}_{\Xi_1}, \hat{\mathcal{L}}_{\Xi_2}] \approx \hat{\mathcal{L}}_{[\Xi_1, \Xi_2]} \mod \text{S.C.}$$
Double Field Theory (DFT) \cite{Hull-Zwiebach '09} = the T-duality covariantised an effective theory of strings

- a gravity theory defined on the doubled spacetime \mathcal{M}^{2D}
- \mathcal{M}^{2D}: locally given by $\mathcal{M}^{2D} \cong M^D \times \tilde{M}^D$ (M^D: spacetime)

- the metric and the B-field are on equal footing
- the generalised diffeomorphism in \mathcal{M}^{2D}: $\hat{\mathcal{L}}_\Xi$.
 - contains diffeo. in M^D and $U(1)$ gauge transf. by 1-form
 - the difference between $\hat{\mathcal{L}}_\Xi$ and the ordinary Lie deriv. \mathcal{L}_Ξ

\[
\hat{\mathcal{L}}_\Xi \Phi^M = \mathcal{L}_\Xi \Phi^M + \Phi_K \partial^M \Xi^K
\]
Infinitesimal Gauge Symmetry in DFT

- Infinitesimal gen. gauge transf.: given by the gen. Lie deriv.
- Commutator of gen. Lie deriv.: governed by the C-bracket

\[[\hat{L} \Xi_1, \hat{L} \Xi_2] \approx \hat{L}_{[\Xi_1, \Xi_2]} \]

- the C-bracket written by \(D \)-dim. quantities:

\[[\Xi_1, \Xi_2]_C = [X_1, X_2]_L + \mathcal{L}_{X_1} \xi_2 - \mathcal{L}_{X_2} \xi_1 - \frac{1}{2} d(\iota_{X_1} \xi_2 - \iota_{X_2} \xi_1) \]

\[+ [\xi_1, \xi_2]_L + \tilde{\mathcal{L}}_{\xi_1} X_2 - \tilde{\mathcal{L}}_{\xi_2} X_1 + \frac{1}{2} \tilde{d}(\iota_{X_1} \xi_2 - \iota_{X_2} \xi_1) \]

where \(\Xi^M_i \partial_M = X^\mu_i \partial_\mu + \xi_{i, \mu} \tilde{\partial}^\mu \) is doubled vector field.
The mathematical structure corresponding to the C-bracket is the **Vaisman algebroid**.

\[
[\Xi_1, \Xi_2]_C = [X_1, X_2]_L + \mathcal{L}_{X_1} \xi_2 - \mathcal{L}_{X_2} \xi_1 - \frac{1}{2} d(\iota_{X_1} \xi_2 - \iota_{X_2} \xi_1) \\
+ [\xi_1, \xi_2] \tilde{\mathcal{L}} + \tilde{\mathcal{L}}_{\xi_1} X_2 - \tilde{\mathcal{L}}_{\xi_2} X_1 + \frac{1}{2} \tilde{d}(\iota_{X_1} \xi_2 - \iota_{X_2} \xi_1)
\]
Vaisman Algebroid

<table>
<thead>
<tr>
<th>Definition</th>
<th>Definition</th>
</tr>
</thead>
</table>
| Courant algebroid is defined by $(\mathcal{C},[\cdot,\cdot],\rho_\mathcal{C},(\cdot,\cdot))$. | Vaisman algebroid is defined by $(\mathcal{V},[\cdot,\cdot]_\mathcal{V},\rho_\mathcal{V},(\cdot,\cdot))$.
| Courant bracket $[\cdot,\cdot]_\mathcal{C}$ satisfies the following axioms: | Vaisman bracket $[\cdot,\cdot]_\mathcal{V}$ satisfies the following axioms:
| C1. failure of Jacobi ident. | V1. Leibniz rule |
| C2. anchor: homomorphically maps | V2. compatibility b/w \cdot,\cdot & $\rho_\mathcal{V}$ |
| C3. Leibniz rule | |
| C4. (section condition) | Comparing the two defs., only \textbf{C3} and \textbf{C5} are required for the Vaisman algebroid. |
| C5. compatibility b/w (\cdot,\cdot) & $\rho_\mathcal{C}$ | |
Vaisman Algebroid

[Definition]

Courant algebroid is defined by
\((C, [\cdot, \cdot], \rho_C, (\cdot, \cdot))\).

Courant bracket \([\cdot, \cdot]_C\) satisfies the following axioms:

C1. failure of Jacobi identity.

C2. anchor: homomorphic map

C3. Leibniz rule

C4. (section condition)

C5. compatibility b/w \((\cdot, \cdot)\) & \(\rho_C\)

[Definition]

Vaisman algebroid is defined by
\((V, [\cdot, \cdot], \rho_V, (\cdot, \cdot))\).

Vaisman bracket \([\cdot, \cdot]_V\) satisfies the following axioms:

V1. Leibniz rule

V2. compatibility b/w \((\cdot, \cdot)\) & \(\rho_V\)

C1, C2, and C4 need the **derivation condition**
A Courant algebroid can be constructed from a Lie bialgebroid.

[Liu-Weinstein-Xu '97]

The Lie bialgebroid \((L, L^*)\) requires a compatibility condition between a Lie algebroid \(L\) and a Lie coalgebroid \(L^*\).

The derivation condition of the Lie bialgebroid

= a compatibility cond. b/w a Lie algebroid and a Lie coalgebroid

\[d_*[A, B]_S = [d_* A, B]_S + [A, d_* B]_S, \quad A, B \in \Gamma(L) \]
Vaisman Algebroid

<table>
<thead>
<tr>
<th>Definition</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courant algebroid is defined by $(\mathcal{C}, [\cdot, \cdot]_c, \rho_c, (\cdot, \cdot))$.</td>
<td>Vaisman algebroid is defined by $(\mathcal{V}, [\cdot, \cdot]_V, \rho_V, (\cdot, \cdot))$.</td>
</tr>
<tr>
<td>Courant bracket $[\cdot, \cdot]_c$ satisfies the following axioms:</td>
<td>Vaisman bracket $[\cdot, \cdot]_V$ satisfies the following axioms:</td>
</tr>
<tr>
<td>C1. failure of Jacobi ident.</td>
<td>V1. Leibniz rule</td>
</tr>
<tr>
<td>C2. anchor: homomorphc map</td>
<td>V2. compatibility b/w (\cdot, \cdot) & ρ_V</td>
</tr>
<tr>
<td>C3. Leibniz rule</td>
<td>C1, C2, and C4 need the derivation condition</td>
</tr>
<tr>
<td>C4. (section condition)</td>
<td></td>
</tr>
</tbody>
</table>
Vaisman Algebroid

<table>
<thead>
<tr>
<th>Definition</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courant algebroid is defined by ((\mathcal{C}, [\cdot, \cdot]_c, \rho_c, (\cdot, \cdot))).</td>
<td>Vaisman algebroid is defined by ((\mathcal{V}, [\cdot, \cdot]_V, \rho_V, (\cdot, \cdot))).</td>
</tr>
<tr>
<td>Courant bracket ([\cdot, \cdot]_c) satisfies the following axioms:</td>
<td>Vaisman bracket ([\cdot, \cdot]_V) satisfies the following axioms:</td>
</tr>
<tr>
<td>C1. failure of Jacobi ident.</td>
<td>V1. Leibniz rule</td>
</tr>
<tr>
<td>C2. anchor: homomorphic map</td>
<td>V2. compatibility b/w ((\cdot, \cdot)) & (\rho_V)</td>
</tr>
<tr>
<td>C3. Leibniz rule</td>
<td>We show that the Vaisman algebroid is constructed with a Lie algebroid pair.</td>
</tr>
<tr>
<td>C4. (section condition)(^1)</td>
<td></td>
</tr>
<tr>
<td>C5. compatibility b/w ((\cdot, \cdot)) & (\rho_c)</td>
<td></td>
</tr>
</tbody>
</table>
Given a Lie algebroid pair \((E, E^*)\), we consider \(\mathcal{V} = E \oplus E^*\).

- Non-degenerate bilinear form \((\langle \cdot, \cdot \rangle: \text{internal prod.}):\)
 \[
 (e_1, e_2)_\pm = \frac{1}{2} \left(\langle \xi_1, X_2 \rangle \pm \langle \xi_2, X_1 \rangle \right) \quad (X_i \in E, \xi_i \in E^*).
 \]

- Skew-symmetric bracket:
 \[
 [e_1, e_2]_\mathcal{V} = [X_1, X_2]_E + \mathcal{L}_{X_1} \xi_2 - \mathcal{L}_{X_2} \xi_1 + d(e_1, e_2)_- \\
 + [\xi_1, \xi_2]_{E^*} + \mathcal{L}_{\xi_1} X_2 - \mathcal{L}_{\xi_2} X_1 - d^*(e_1, e_2)_-.
 \]

- Anchor map: \(\rho_\mathcal{V} = \rho + \rho^* (\rho : E \rightarrow TM)\).

\(\mathcal{V}, [\cdot, \cdot]_\mathcal{V}, \rho_\mathcal{V}, (\cdot, \cdot)_\pm\) defines a Vaisman algebroid
The main result of the first half part is the following two points:

[Mori-Sasaki-K.S.,1901.04777]

- The Vaisman algebroid does not require the derivation condition.
- We construct the Vaisman algebroid with a Lie algebroid pair. (not a Lie bialgebroid)

These points were talked by Ms. Mori.
Our Result (of the second part)

- DFT geometry: given by a para-Hermitian manifold \mathcal{M}
- using a para-complex structure
 \Rightarrow we split the tangent bundle $T\mathcal{M}$ into 2 distributions L, \tilde{L}

Main Result of This Talk

[Mori-Sasaki-K.S., 1901.04777]

- We define a Lie algebroid on L (resp. \tilde{L}).
- We construct a Vaisman algebroid by using a Lie algebroid pair (L, \tilde{L}) in the DFT setup.
Para-Hermitian Geometry
Doubled Spacetime Geometry

The coordinates in Double Field Theory are \((x^{\mu}, \tilde{x}_{\mu})\).

- \(x^{\mu}\): conjugate to the Kaluza-Klein mode (momentum)
- \(\tilde{x}_{\mu}\): conjugate to the string winding mode

\(\Rightarrow\) Spacetime is doubled!

Doubled spacetime: described by para-Hermitian manifold

[Vaisman '13]

Before introducing a para-Hermitian mfd., we define an almost para-complex mfd.
An almost para-complex manifold is given by \((\mathcal{M}, K)\).

- a differentiable manifold \(\mathcal{M}\)
- the vector bundle endomorphism \(K \in \text{End}(T\mathcal{M})\)
- \(K\) is an almost para-complex structure that satisfies \(K^2 = +1\)
Almost Para-Hermitian Manifold

An almost para-Hermitian manifold is given by \((\mathcal{M}, K, \eta)\):

- an almost para-complex manifold \((\mathcal{M}, K)\)
- a neutral metric \(\eta : T\mathcal{M} \times T\mathcal{M} \rightarrow \mathbb{R}\)
- \(K\) and \(\eta\) satisfy the compatibility condition:
 \[\eta(K(X), K(Y)) = -\eta(X, Y) \]
Para-Hermitian Manifold

Para-Hermitian manifold \((\mathcal{M}, K, \eta)\):

- the integrability condition is imposed: \(N_K(X, Y) = 0\)

the Nijenhuis tensor is defined by \((X, Y \in T\mathcal{M})\)

\[N_K(X, Y) = \frac{1}{4}\left\{[K(X), K(Y)] + [X, Y] - K([K(X), Y] + [X, K(Y)])\right\}\]

\[
\begin{align*}
\text{almost para-complex} & \quad N_K = 0 \\
\text{para-complex} & \quad \eta \\
\text{para-Hermitian} & \quad N_K = 0 \\
\text{almost para-Hermitian} & \quad \eta
\end{align*}
\]
By using the almost para-complex structure: $K^2 = 1$

\[T\mathcal{M} = L \oplus \tilde{L} \]

- L: eigenbundle associated with the eigenvalue $K = +1$
- \tilde{L}: associated with $K = -1$

This decomposition is performed via the projection operators

\[P = \frac{1}{2}(1 + K), \quad \tilde{P} = \frac{1}{2}(1 - K) \]

L, \tilde{L} are distributions of $T\mathcal{M}$

(a distribution: a generalisation of a vector sub-bundle)
Integrability of Distributions

Since K is the para-complex strc., we can decompose N_K:

$$N_K(X, Y) = N_P(X, Y) + N_{\tilde{P}}(X, Y)$$

where

$$N_P(X, Y) = \tilde{P}[P(X), P(Y)], \quad N_{\tilde{P}}(X, Y) = P[\tilde{P}(X), \tilde{P}(Y)]$$

If the tensor N_P ($N_{\tilde{P}}$) vanishes, the distribution L (\tilde{L}) is involutive.

Frobenius Theorem

A distribution L is Frobenius integrable iff L is involutive

The integrability of distributions is independent of each other.
(cf. the case of complex mfd.)
Frobenius Theorem (alternative rep.)

A subbundle $E \subset T\mathcal{M}$ is integrable iff it is defined by a foliation of \mathcal{M}.

When L and \tilde{L} are integrable, then they have foliation structures:

$$L = T\mathcal{F} \quad \text{and} \quad \tilde{L} = T\tilde{\mathcal{F}}$$

- The foliation \mathcal{F} is given by the union of leaves $\bigcup_p M_p$.

![Diagram of foliation structures](image-url)
Foliation Structure

Frobenius Theorem (alternative rep.)

A subbundle $E \subset T\mathcal{M}$ is integrable iff it is defined by a foliation of \mathcal{M}.

When L and \tilde{L} are integrable, then they have foliation structures:

$$L = T\mathcal{F} \quad \text{and} \quad \tilde{L} = T\tilde{\mathcal{F}}$$

- A leaf M_p is a subspace of \mathcal{F} that pass through a point $p \in \mathcal{M}$.
Foliation Structure

Frobenius Theorem (alternative rep.)

A subbundle $E \subset T\mathcal{M}$ is integrable iff it is defined by a foliation of \mathcal{M}.

When L and \tilde{L} are integrable, then they have foliation structures:

$$ L = T\mathcal{F} \quad \text{and} \quad \tilde{L} = T\tilde{\mathcal{F}} $$

- For \mathcal{F}, the local coordinate x^μ is given along a leaf M_p.

![Diagram of foliations](image)
Foliation Structure

Frobenius Theorem (alternative rep.)

A subbundle $E \subset T\mathcal{M}$ is integrable iff it is defined by a foliation of \mathcal{M}

When L and \tilde{L} are integrable, then they have foliation structures:

$$L = T\mathcal{F} \quad \text{and} \quad \tilde{L} = T\tilde{\mathcal{F}}$$

- The one for the transverse directions to leaves is \tilde{x}_μ.

[Diagram showing foliation structures \mathcal{F} and $\tilde{\mathcal{F}}$ with leaves and transverse directions]
The metric η over \mathcal{M} can be seen as a map

$$\eta : T\mathcal{M} = L \oplus \tilde{L} \to T^*\mathcal{M} = L^* \oplus \tilde{L}^*$$

By using η, the following isomorphisms are defined

$$\phi^+ : \tilde{L} \to L^* \quad \text{and} \quad \phi^- : L \to \tilde{L}^*$$

Given ϕ^+, ϕ^-, the following new isomorphisms are defined

$$\Phi^+ : T\mathcal{M} \to L \oplus L^* \quad \text{and} \quad \Phi^- : T\mathcal{M} \to \tilde{L} \oplus \tilde{L}^*$$

The map Φ^+ is

- called the natural isomorphism
- utilized to relate DFT and Hitchin’s Generalized Geometry
Doubled Aspects of Vaisman Algebroid in DFT
Let us define a Lie algebroid structure in DFT.

By using the following two theorems,

- Multi-vectors on a manifold define a Gerstenhaber algebra by the Schouten bracket [Tulczyjew '74]
- A Lie algebroid structure over a vector bundle $V \to M$ and a Gerstenhaber algebra over multi-vectors $\Gamma(\wedge^\bullet V)$ are equivalent [Vaintrob '97]

a Lie algebroid is defined by the exterior algebra of multi-vectors in DFT.
Multi-vector on Para-Hermitian Mfd.

We define a natural exterior alg. on the tangent bundle over an almost para-complex mfd. \mathcal{M}

- A set of doubled multi-vectors: $\hat{A}^k(\mathcal{M}) = \Gamma(\bigwedge^k T\mathcal{M})$
- We define $\mathcal{A}^{r,s}(\mathcal{M})$ as the section of $(\bigwedge^r L) \wedge (\bigwedge^s \tilde{L})$
Multi-vector on Para-Hermitian Mfd.

We define a natural exterior alg. on the tangent bundle over an almost para-complex mfd. \mathcal{M}

- A set of doubled multi-vectors: $\hat{\mathcal{A}}^k(\mathcal{M}) = \Gamma(\wedge^k T\mathcal{M})$

- We define $\mathcal{A}^{r,s}(\mathcal{M})$ as the section of $(\wedge^r L) \wedge (\wedge^s \tilde{L})$

We obtain the decomposition: $\hat{\mathcal{A}}^k(\mathcal{M}) = \bigoplus_{k=r+s} \mathcal{A}^{r,s}(\mathcal{M})$

This decomposition is given by the canonical projection operator

$$\pi^{r,s} : \hat{\mathcal{A}}^{r+s}(\mathcal{M}) \to \mathcal{A}^{r,s}(\mathcal{M})$$

$\pi^{r,s}$ is induced by P and \tilde{P}
Para-Dolbeault Operator

Then, we define the exterior derivatives acting on L and \tilde{L}

\[d : \mathcal{A}^{r,s}(\mathcal{M}) \to \mathcal{A}^{r,s+1}(\mathcal{M}) \quad (\wedge^s \tilde{L} \to \wedge^{s+1} \tilde{L}) \]
\[\tilde{d} : \mathcal{A}^{r,s}(\mathcal{M}) \to \mathcal{A}^{r+1,s}(\mathcal{M}) \quad (\wedge^r L \to \wedge^{r+1} L) \]

d and \tilde{d} have the following properties:

\[d^2 = 0, \quad \tilde{d}^2 = 0, \quad dd + \tilde{d}\tilde{d} = 0. \]

They are called the para-Dolbeault operators.
We describe the DFT setting as the flat para-Hermitian Geometry.

\[(\mathcal{M}, K, \eta) = \left(\mathcal{M}^{2D}, \begin{pmatrix} -1 & 0 \\ 0 & +1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\right)\]

The tangent space \(T\mathcal{M}\) is spanned by \(\partial_M\) (\(M = 1, \ldots, 2D\)).

Vector fields on \(T\mathcal{M}\) are decomposed by projector \(P, \tilde{P}\).

\[\Xi = \Xi^M \partial_M = A^\mu(x, \tilde{x}) \partial_\mu + \alpha_\mu(x, \tilde{x}) \tilde{\partial}^\mu\]

where \(\Xi \in \Gamma(T\mathcal{M})\), \(A \in \Gamma(L)\), \(\alpha \in \Gamma(\tilde{L})\)

\(x^M = (x^\mu, \tilde{x}_\mu)\) is the induced decomposition of the local coordinate on the base space \(\mathcal{M}\).
Given a k-vector $A \in \Gamma(\wedge^k L)$, we introduce the “odd coordinate” $\zeta_\mu := \partial_\mu$

$$A = \frac{1}{k!} A^{\mu_1 \cdots \mu_k} \partial_{\mu_1} \wedge \cdots \wedge \partial_{\mu_k} = \frac{1}{k!} A^{\mu_1 \cdots \mu_k} \zeta_{\mu_1} \cdots \zeta_{\mu_k}$$

ζ_μ can be treated as a Grassmann number

\implies differential $\partial/\partial \zeta_\mu$ is defined by the right derivative

By using ζ_μ derivative, the Schouten bracket is given by

$$[A, B]_S = \left(\frac{\partial}{\partial \zeta_\mu} A \right) \partial_\mu B - (-1)^{(p-1)(q-1)} \left(\frac{\partial}{\partial \zeta_\mu} B \right) \partial_\mu A$$

The same def. holds for $[\cdot, \cdot]^*_S$ on \tilde{L}: replaced $\zeta_\mu = \partial_\mu \leftrightarrow \zeta^{*\mu} = \tilde{\partial}^\mu$
The Para-Dolbeault operator \tilde{d} maps a k-vector to a $(k + 1)$-vector.

Using the local coordinate, we find that the action of \tilde{d} on a k-vector X is given by

$$\tilde{d}X = \frac{1}{k!} \tilde{\partial}^\mu X_{\nu_1 \cdots \nu_k} \partial_\mu \wedge \partial_{\nu_1} \wedge \cdots \wedge \partial_{\nu_k}.$$

In the DFT realization,

- we find that the exterior derivative \tilde{d} on L and the bracket $[\cdot, \cdot]_S^*$ is compatible. (p.app.3)
- the same discussion holds for the operator d on \tilde{L}.

Now, the exterior algebra of multi-vectors in DFT is defined.

We obtain the Lie algebroid \((\wedge \cdot L, [\cdot, \cdot]_S, d)\)
and its dual Lie algebroid \((\wedge \cdot \tilde{L}, [\cdot, \cdot]^*_{S}, \tilde{d})\) in DFT.

The Vaisman Algebroid is constructed by the Lie algebroid pair \((L, \tilde{L})\) without the derivation condition.

Let us examine the violation of the derivation condition.
Examination of the Derivation Condition

The derivation condition of the Lie bialgebroid

\[d^*[A, B]_S = [d^*A, B]_S + [A, d^*B]_S, \quad A, B \in \Gamma(L) \]

We examine the d.c. in DFT by explicit calculation.

LHS:

\[\tilde{d}[A, B]_S \]

\[= \tilde{\partial}^\mu [A, B]_S \partial_\mu \land \partial_\nu \]

\[= \tilde{\partial}^\mu (A^\rho \partial_\rho B^\nu - B^\rho \partial_\rho A^\nu) \partial_\mu \land \partial_\nu \]

\[= (\tilde{\partial}^\mu A^\rho \partial_\rho B^\nu + A^\rho \partial_\rho \tilde{\partial}^\mu B^\nu - \tilde{\partial}^\mu B^\rho \partial_\rho A^\nu - B^\rho \partial_\rho \tilde{\partial}^\mu A^\nu) \partial_\mu \land \partial_\nu, \]
Examination of the Derivation Condition

The derivation condition of the Lie bialgebroid

= Compatibility cond. between Lie algebroid and Lie coalgebroid

\[d_\ast [A, B]_S = [d_\ast A, B]_S + [A, d_\ast B]_S, \quad A, B \in \Gamma(L) \]

We examine the d.c. in DFT by explicit calculation.

LHS: \(\tilde{d}[A, B]_S = (\tilde{\partial}^\mu A^\rho \partial_\rho B^\nu + A^\rho \partial_\rho \tilde{\partial}^\mu B^\nu - \tilde{\partial}^\mu B^\rho \partial_\rho A^\nu - B^\rho \partial_\rho \tilde{\partial}^\mu A^\nu) \partial_\mu \wedge \partial_\nu \)

RHS (1st):

\[[\tilde{d}A, B]_S = \left(\frac{\partial}{\partial \zeta_\rho} \tilde{d}A \right) \partial_\rho B - (-1)^0 \left(\frac{\partial}{\partial \zeta_\rho} B \right) \partial_\rho \tilde{d}A \]

\[= (\tilde{\partial}^\mu A^\rho \zeta_\mu - \tilde{\partial}^\rho A^\mu \zeta_\mu) \partial_\rho B^\nu \zeta_\nu - B^\rho \partial_\rho \tilde{\partial}^\mu A^\nu \zeta_\mu \zeta_\nu \]

\[= (\tilde{\partial}^\mu A^\rho \partial_\rho B^\nu - \tilde{\partial}^\rho A^\mu \partial_\rho B^\nu - B^\rho \partial_\rho \tilde{\partial}^\mu A^\nu) \partial_\mu \wedge \partial_\nu, \]
The derivation condition of the Lie bialgebroid

\[d_\ast [A, B]_S = [d_\ast A, B]_S + [A, d_\ast B]_S, \quad A, B \in \Gamma(L) \]

We examine the d.c. in DFT by explicit calculation.

LHS: \(\tilde{d}[A, B]_S = (\tilde{\partial}^\mu A^\rho \partial_\rho B^\nu + A^\rho \partial_\rho \tilde{\partial}^\mu B^\nu - \tilde{\partial}^\mu B^\rho \partial_\rho A^\nu - B^\rho \partial_\rho \tilde{\partial}^\mu A^\nu) \partial_\mu \wedge \partial_\nu \)

RHS (1st): \([\tilde{d}A, B]_S = (\tilde{\partial}^\mu A^\rho \partial_\rho B^\nu - \tilde{\partial}^\rho A^\mu \partial_\rho B^\nu - B^\rho \partial_\rho \tilde{\partial}^\mu A^\nu) \partial_\mu \wedge \partial_\nu \)

RHS (2nd):

\[[A, \tilde{d}B]_S = -[\tilde{d}B, A]_S \]

\[= - (\tilde{\partial}^\mu B^\rho \partial_\rho A^\nu - \tilde{\partial}^\rho B^\mu \partial_\rho A^\nu - A^\rho \partial_\rho \tilde{\partial}^\mu B^\nu) \partial_\mu \wedge \partial_\nu. \]
Examination of the Derivation Condition

The derivation condition of the Lie bialgebroid

\[= \text{Compatibility cond. between Lie algebroid and Lie coalgebroid} \]

\[d\ast [A, B]_S = [d\ast A, B]_S + [A, d\ast B]_S, \quad A, B \in \Gamma(L) \]

We examine the d.c. in DFT by explicit calculation.

LHS: \(\tilde{d}[A, B]_S = (\tilde{\partial}^\mu A^\rho \partial_\rho B^\nu + A^\rho \partial_\rho \tilde{\partial}^\mu B^\nu - \tilde{\partial}^\mu B^\rho \partial_\rho A^\nu - B^\rho \partial_\rho \tilde{\partial}^\mu A^\nu)\partial_\mu \wedge \partial_\nu \)

RHS (1st): \([\tilde{d}A, B]_S = (\tilde{\partial}^\mu A^\rho \partial_\rho B^\nu - \tilde{\partial}^\rho A^\mu \partial_\rho B^\nu - B^\rho \partial_\rho \tilde{\partial}^\mu A^\nu)\partial_\mu \wedge \partial_\nu \)

RHS (2nd): \([A, \tilde{d}B]_S = -(\tilde{\partial}^\mu B^\rho \partial_\rho A^\nu - \tilde{\partial}^\rho B^\mu \partial_\rho A^\nu - A^\rho \partial_\rho \tilde{\partial}^\mu B^\nu)\partial_\mu \wedge \partial_\nu \)

By using \(\eta^{MN} \), the remaining terms are rewritten as

\[\tilde{\partial}^\rho A^\mu \partial_\rho B^\nu + \tilde{\partial}^\rho B^\nu \partial_\rho A^\mu = \eta^{MN} \partial_M A^\mu \partial_N B^\nu \]
The derivation condition of the Lie bialgebroid

\[d^*[A, B]_S = [d^*A, B]_S + [A, d^*B]_S, \quad A, B \in \Gamma(L) \]

We examine the d.c. in DFT by explicit calculation.

We obtain

\[\tilde{d}[A, B]_S = [\tilde{d}A, B]_S + [A, \tilde{d}B]_S + (\eta^{MN} \partial_M A^\mu \partial_N B^\nu) \partial_\mu \wedge \partial_\nu \]

The last contribution represents the violation of the d.c.

(Recall: the section condition is \(\eta^{MN} \partial_M \ast \partial_N \ast = 0 \))
A double of a pair of Lie algebroids

The derivation condition is violated

\[\Rightarrow (L, \tilde{L}) \text{ is NOT a Lie bialgebroid} \]
A double of a pair of Lie algebroids

The derivation condition is violated

\[(L, \tilde{L}) \text{ is NOT a Lie bialgebroid} \]

We define the two structures required for a double of \((L, \tilde{L})\).

- The bilinear form is given by

\[
(A + \alpha, B + \beta) = \frac{1}{2} \left\{ \langle \alpha, B \rangle + \langle \beta, A \rangle \right\}.
\]

- The skew-symmetric bracket (called the Vaisman bracket)

\[
[e_1, e_2]_V = [X_1, X_2]_E + \mathcal{L}_{X_1} \xi_2 - \mathcal{L}_{X_2} \xi_1 + \text{d}(e_1, e_2) -
+ [\xi_1, \xi_2]_E^* + \mathcal{L}_{\xi_1} X_2 - \mathcal{L}_{\xi_2} X_1 - \text{d}^*(e_1, e_2) -.
\]

- The anchor map \(\rho_V = \rho_L + \rho_{\tilde{L}}\), the differential op. \(\mathcal{D} = \text{d} + \tilde{\text{d}}\).

\[(L \oplus \tilde{L}, [\cdot, \cdot]_V, \rho_V, (\cdot, \cdot)) \text{ defines a Vaisman algebroid.} \]
Discussion on DFT Gauge Symmetry
Gauge Symmetry of DFT

- C-bracket = T-duality covariantised Lie bracket-like structure
 - accommodates the diffeo. and B-field gauge symmetry algebra
- The structure of the C-bracket in DFT naturally arises as a Vaisman bracket on a para-Hermitian geometry.
 [Vaisman ’13, Svoboda ’18]

- The Vaisman bracket governs the “extended” gauge symmetry in DFT.
 → what is the “extended” gauge symmetry?
Non-Abelian B-field Gauge Symmetry

- Vectors in \tilde{L} are identified with 1-forms in L^* by Φ^+
 Recall: the natural isomorphism $\Phi^+ : L \oplus \tilde{L} \rightarrow L \oplus L^*$
 $\rightarrow [\cdot, \cdot]_{\tilde{L}}$ in \tilde{L} represents the B-field gauge algebra

- In string theory, the B-field gauge symmetry is Abelian
- However, $[\cdot, \cdot]_{\tilde{L}}$ in the Vaisman bracket is generally non-zero
 \rightarrow in DFT, B gauge sym. should be effectively non-Abelian

\Rightarrow This is the “extended” gauge symmetry.
The section condition is needed

- The geometric realization of the Vaisman algebroid → not necessarily require the section condition

- imposing the S.C., gauge algebra is closed by the C-bracket

- in order that algebra given by C-bracket generates a symmetry, S.C. is necessarily satisfied, either implicit or explicitly
A trivial solution of the section condition

• trivial solution of S.C. is winding derivative vanishing

\[
\tilde{d}f = 0.
\]

giving para-holomorphic condition:

• \([\cdot, \cdot]_{\tilde{L}}\) vanish and C-bracket is reduced to original Courant br.

\[
[X_1, X_2]_C = [X_1, X_2]_L + \mathcal{L}_{X_1} \xi_2 - \mathcal{L}_{X_2} \xi_1 - \frac{1}{2} d(\iota_{X_1} \xi_2 - \iota_{X_2} \xi_1)
\]

\[
+ [\xi_1, \xi_2]_{\tilde{L}} + \tilde{\mathcal{L}}_{\xi_1} X_2 - \tilde{\mathcal{L}}_{\xi_2} X_1 + \frac{1}{2} \tilde{d}(\iota_{X_1} \xi_2 - \iota_{X_2} \xi_1)
\]

• imposing the S.C., non-Abelian \(B\)-field gauge symmetry becomes Abelian \([\cdot, \cdot]_{\tilde{L}} = 0\)
Summary
• $T\mathcal{M}$ is decomposed in $L \oplus \tilde{L}$ by the para-complex struc. K.
• We define a Lie algd. struc. through the exterior alg. on L, \tilde{L}.
• We provide a geometric realization of the Vaisman algebroid.

• The failure of the d.c. is resolved by imposing the S.C.
• We found an algebraic origin of the S.C.

• The gauge transf. of B should be effectively non-Abelian
Future Direction

- In general setups, there is no need to impose S.C. → Vaisman algebroids would play important roles in applications of DFT

- We expect that similar discussions are applied to the exceptional geometries (exceptional field theories)

- Finite gauge transf. in DFT is governed by an “integrated” versions of Vaisman and Courant algebroids → groupoid(-like) structures? (cf. Lie’s 3rd theorem)
Thank you for your attention!
ご清聴ありがとうございます。
Backup
The Section Condition: needed to make DFT be a physical theory

- the physical spacetime: a D-dimensional space (not $2D$)
- S.C. is a constraint that reduces extra d.o.f.
- S.C. originally came from the LMC of closed strings
- S.C. is necessary due to
 - the closedness of the DFT gauge algebra
 $$[\hat{\mathcal{L}}_{\Xi_1}, \hat{\mathcal{L}}_{\Xi_2}] \approx \hat{\mathcal{L}}_{[\Xi_1,\Xi_2]} \mod \text{S.C.}$$
 - the gauge invariance of the DFT action
 $$\delta_{\Xi} S_{\text{DFT}} = \hat{\mathcal{L}}_{\Xi} S_{\text{DFT}} \approx 0 \mod \text{S.C.}$$
Example: the $r = 2, s = 0$ case

The projectors in a para-complex mfd. w/ $K = \text{diag}(-1, +1)$:

\[
P = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad \tilde{P} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.
\]

The component expression of $T \in \hat{A}^2$: $T^{MN} = \begin{pmatrix} t_{\mu\nu} & t_{\mu}^{\nu} \\ t^{\mu}_{\ \nu} & t^{\mu\nu} \end{pmatrix}$.

The canonical projector $\pi^{2,0}$ defined through P is given by

\[
P^{M}_{\ K} T^{KL} P^{N}_{\ L} = \begin{pmatrix} 0 & 0 \\ 0 & t^{\mu\nu} \end{pmatrix} \quad (t^{\mu\nu} \in A^{2,0}).
\]

This implies $\pi^{2,0}(T^{MN}) = t^{\mu\nu}$.

The other projectors $\pi^{1,1}, \pi^{0,2}$ are defined similarly.
Compatibility between \tilde{d} and $[\cdot, \cdot]_S^*$

The general relation of the para-Dolbeault operator:

$$\tilde{d}A(\alpha_1, \ldots \alpha_k) = \sum_{i=1}^{k+1} (-1)^{i+1} \rho_{\tilde{L}}(\alpha_i) \cdot (A(\alpha_1, \ldots, \tilde{\alpha}_i, \ldots, \alpha_k))$$

$$+ \sum_{i<j} (-1)^{i+j} A([\alpha_i, \alpha_j]_S^*, \alpha_1, \ldots, \tilde{\alpha}_i, \ldots, \tilde{\alpha}_j, \ldots, \alpha_k).$$

For example the case of $k = 1$, we have

$$\tilde{d}A(\alpha_1, \alpha_2) = \rho_{\tilde{L}}(\alpha_1) \cdot (A(\alpha_2)) - \rho_{\tilde{L}}(\alpha_2) \cdot (A(\alpha_1)) - A([\alpha_1, \alpha_2]_S^*).$$

Then in the DFT realization, since $\rho_{\tilde{L}}(\alpha_1) = \alpha_1^\mu \tilde{\partial}^\mu$, we have

$$A([\alpha_1, \alpha_2]_S^*)$$

$$= \alpha_1^\mu \tilde{\partial}^\mu (A^\nu \alpha_2^\nu) - \alpha_2^\nu \tilde{\partial}^\nu (A^\mu \alpha_1^\mu) - (\tilde{\partial}^\mu A^\nu - \tilde{\partial}^\nu A^\mu) \alpha_1^\mu \alpha_2^\nu$$

$$= A^\mu (\alpha_1^\nu \tilde{\partial}^\nu \alpha_2^\mu - \alpha_2^\nu \tilde{\partial}^\nu \alpha_1^\mu).$$
• For a vector bundle $E \to M$, a \textit{distribution} D in E assigns to each $x \in M$ a vector subspace $D_x \subseteq E_x$.

• The dimension of D_x is called the \textit{rank} of D at x.

• If the rank D_x is independent of x, the distribution is called \textit{regular}.

• If there is a smooth local section v of E (s.t. $v(y) \in D_y$ and $v(x) = v_0$) for any $x \in M$ and $v_0 \in D_x$, the distribution is called \textit{smooth}.

• A smooth and regular distribution is a \textit{subbundle}.
• GA is a \mathbb{Z} graded-commutative algebra with a Lie bracket of degree -1 satisfying the Poisson identity
• the degree of an element a is denoted by $|a|$
• satisfying the following properties
 • (the product (degree 0)): $|ab| = |a| + |b|$
 • (Lie bracket (degree -1)): $|[a, b]| = |a| + |b| - 1$
 • (associativity): $(ab)c = a(bc)$
 • (graded-commutativity): $ab = (-1)^{|a||b|}ba$
 • (Poisson identity): $[a, bc] = [a, b]c + (-1)^{(|a|-1)|b|}b[a, c]$
 • (skew-symmetry): $[a, b] = -(1)^{(|a|-1)(|b|-1)}[b, a]$
 • (Jacobi identity):
 \[[a, [b, c]] = [[a, b], c] + (-1)^{(|a|-1)(|b|-1)}[b, [a, c]] \]
• GA differ from Poisson superalgebras in that the Lie bracket has degree -1 rather than degree 0
A Gerstenhaber algebra is a Poisson 2-algebra

A Poisson 2-algebra is a Poisson algebra in graded vector spaces with Poisson bracket of degree -1

The exterior algebra of a Lie algebra is a Gerstenhaber algebra

The differential forms on a Poisson manifold form a Gerstenhaber algebra

The multivector fields on a manifold form a Gerstenhaber algebra using the Schouten-Nijenhuis bracket

A Batalin-Vilkovisky algebra has an underlying Gerstenhaber algebra